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INTRODUCTION

The FPS-16 radar/Jimsphere rising balloon system is one of the most
accurate operational methods of obtaining detailed wind profile measurements
from the surface to eighteen kilometers. At present, the system can routinely
provide wind speed measurements to an RMS accuracy of about 0.5 meter per
second with a vertical spatial frequency resolution of about one cycle per 100
meters [ 1]. Such wind data is sufficiently accurate to allow computation of
the important structural loads on space vehicles during the critical, high
dynamic pressure regions of flight. The ultimate accuracy achievable by the
FPS-16/Jimsphere system depends upon such factors as the influence of noise
in the radar data, the noise suppression capability and frequency response of
the data smoothing method, the geometry of the balloon trajectory, and, of
course, the ability of the balloon to respond to changes in the wind field
(balloon response). The first purpose of this study is to investigate the effects
of these and other factors on the accuracy of the FPS-16/Jimsphere system in
order to determine its ultimate wind measuring ability, The second purpose
is to examine the wind measuring ability of rising balloons possessing rise
rates other than the nominal five meter per second constant rate of the
Jimsphere. The main emphasis will be placed upon the influences of radar
noise, trajectory geometry, balloon rise rate, and smoothing techniques. In
the first section of the report, the accuracy of the present system will be
examined. The second section is devoted to an investigation of variable rise
rates and their effects on the system accuracy. Previous studies of the
balloon response and other aerodynamic characteristics will be briefly

reviewed.



ACCURACY OF THE PRESENT FPS-16/JIMSPHERE SYSTEM

Sources of Error

To determine the ultimate accuracy of the Jimsphere system the nature
of the sources of error must be considered. Since the central principle of
the Jimsphere system is the determination of winds from time history of
balloon position data provided by a tracking radar, the ability of the balloon
to respond to the wind and the ability of the radar to provide an accurate track
are of great importance. Accordingly, much study has been devoted to the
Jimsphere's aerodynamic characteristics and the effects of radar error. A

brief examination of some of the conclusions reached is given below.

Response of the Jimsphere to the Wind Field - Several investigators

have presented analyses of the dynamic response of rising balloons and falling
spheres to variations in the wind field [Ref. 1-6]. Reed [2] and Eckstrom [3]
considered responses to linear wind speed variations, while Luers and Engler
[4] examined the response to sinusoidal changes of wind speed with altitude.
Zartarian and Thompson [1] considered wind profiles of both sinusoidal and
linear character for the Jimsphere and ROSE rising balloons. In each
investigation the response to vertical variations of totally horizontal winds was
examined under the assumptions of no vertical winds, constant rise rate, an
absence of lift forces, and motion confined to a vertical plane. In particular,
Zartarian and Thompson show that the Jimsphere's response to both types of
wind field is quite good. A measure of response is the dynamic error, Ed’
which is defined as the horizontal sensor velocity subtracted from the true

horizontal wind velocity (E , = Wx-i). Zartarian and Thompson have shown

that this dynamic error fordlinear wind fields is given by Ed = AL where Q
is the wind shear {(meters/second) and L is the "'lag distance', a function of
the balloon rise rate, mass, and the mass of displaced air. The Jimsphere
lag distance is about 1.5 meters so that even ina wind field of an unusually
large shear of 0.1 sec”' the dynamic error in wind speed is only 0.15

meter per second, which is much smaller than other errors in the system.

The dynamic error for wind fields with a sinusoidal wind speed variation with

2



altitude is given by a considerably more complicated expression [ 1]. A more
preferable method of expressing the response to sinusoidal variations is to

give the amplification factor, D_, and phase angle, QpB, of the balloon's

B
motion. The amplification factor is the ratio of the amplitude of the balloon's
motion to that of the wind, or DB = Amp (x) /Amp(WX) and the phase angle is

the angle (in degrees) by which the balloon's sinusoidal motion lags the wind's.

Figure 1, abstracted from [1], presents the variation of D_ and L‘pB

B
with the wavelength of the wind field for two representative altitudes, 9 and
14 kilometers. From the figure we see that DB is above 0.9 and Py below

15° for wavelengths longer than 30 meters, and that D_ is very near 1.0 and

B
¥_ near 1° and 2° at wavelengths longer than 90 meters. If we adopt a

B

criterion of a 10% allowable error in amplitude, it can then be said that the
Jimsphere is an adequate sensor (in terms of dynamic response) for sinusoidal
wind variations of wavelengths as short as approximately 30 meters. At
these wavelengths the balloon motion is about 15° "behind"' the wind motion.
For these reasons the Jimsphere is usually assumed to be a perfect wind
sensor for large horizontal variations in the wind field. Thus, the balloon's
horizontal velocity components are taken as those of the wind.

DeMandel and Krivo [ 5] have investigated the ability of the Jimsphere
system to detect vertical winds and have concluded that up to 15 kilometers
the system is capable of resolving vertical wavelengths greater than 250
meters with an RMS vertical wind speed accuracy of five centimeters per
second. Fichtl [6] has analyzed the Jimsphere response to vertical variations
of both the horizontal and vertical components of the wind in light of the
proposed use of the Jimsphere system for the detection of clear air turbulence.
His study shows that it may be possible to use the Jimsphere to detect
turbulence (at least below 13 kilometers) if proper data reduction techniques
can be developed and careful attention is paid to the balloon's response

characteristics.
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Figure 1. Amplification Factor and Phase Angle of the
Jimsphere Response.

Self-Induced Motion - Included in any discussion of the aerodynamics

of rising spherical balloons must be a mention of the phenomenon of self-
induced motioﬁ. A number of investigations of the self-induced motion of
balloons have been made [Ref. 7-12]. Most recently Fichtl et al. [12] have
examined the aerodynamic characteristics and self-induced motion of the
Jimsphere, which was designed expressly for reducing the self-induced motions
originally observed in the smooth-skinned ROSE series of balloons. Fichtl's
work shows that the Jimsphere can be expected to execute self-induced,

oscillatory motion, predominately in the horizontal plane, at frequencies in



the vicinity of 0.21 Hz. The exact frequency (or wavelength) of the oscillations
depends upon Reynolds number, but wavelengths usually between 21 and 26
meters may be expected assuming a constant rise rate of five meters per
second. Certainly the effects of these motions must be taken into account if
data processing methods are to be devised to resolve the finer details of wind

profiles.

Radar Errors - Radar tracking of the Jimsphere is presently

accomplished with the AN/FPS-16 radar, a high accuracy, monopulse, range-
tracking radar. A detailed error analysis of the FPS-16 has been given by
Barton [13]. The performance of this radar in tracking superpressure
balloons has been examined by Zartarian and Thompson [ 1], Scoggins [14],
and Engler, et al. [15,16]. The errors associated with the radar may be
generally divided into two groups: noise errors and bias errors. Of these,
noise errors are of much greater importance since the noisy position data
must be smoothed and differentiated to obtain winds. The noise error in the
winds is a direct effect of the original noise in the position data. Bias errors,
however, have virtually no effect on wind computations due to the nature of
the differentiation process. A further distinction can be made between ''fixed
(noise) errors' which have approximately constant values and "'variable (noise)
errors' whose magnitudes depend upon the operating conditions of the radar,
the state of the atmosphere, etc. Fixed errors therefore constitute a lower
limit on the error values for any tracking condition. A comprehensive
description of the fixed and variable errors is given in [1]. For the purposes
of this study, the values of noise error have been assumed to represent good
tracking conditions. For good tracking conditions, i.e., clear weather,

slant ranges less than 100 kilometers, elevation angles above 100, etc.,

the RMS noise errors of five meters in range (OR) and 0.1 mils in elevation
and azimuth (GE and OA) have been used. These values are approximately
those specified by the manufacturer, and may be somewhat conservative
(especially for range measurements below 50 kilometer slant ranges where

values of Op 28 small as 1.5 meters have been quoted [1], [15]). The



character of the noise is assumed to be thermal, so that no correlation
among individual errors exists. For simplicity, the values of the RMS noise
errors (OR, OE, and O'A) are assumed constant throughout the measurement
space of the radar. The limits of this space are taken to be: a maximum
slant range of 150 kilometers, 360o in azimuth angle, and 5o to 85O in
elevation angle. In reality, of course, these limits may be severely reduced
by atmospheric conditions, clutter, etc. In order to take this into account
we have noted situations where the slant ranges or elevation angles under
consideration exceed 100 km. or fall below 10° respectively. In these long

slant range and/or low elevation angle situations the noise error will be

quite dependent on the radar's environment.

The servobandwidth setting at which the radar is operated is critical
in determining how quickly the radar can respond to changes in the target
position. This response is in turn reflected in the independence of the
successive data points which result from the digitization of the analog
tracking signals. Low bandwidth settings serve to reduce noise error but
make the response sluggish and consequently introduce correlated servo
response errors in the digitized data. High bandwidth settings reduce these
errors but increase the effects of thermal noise. Engler, et al. [15,16]
have studied this problem in tracking with the AN/FPS-16 and have observed
that for the medium bandwidth setting of five, correlation (or dependence)
may exist between data points as much as 2.0 seconds apart. With high
bandwidth settings, e.g., 7.5, the time between independent points (the time
constant of the radar) drops to about 0.3 second. At the upper limit of 10,
0.1 second independent points may be observed, but the situation is complicated
by the fact that the servo system may now be underdamped. One solution to
this problem has been to average five consecutive 0.1 second data points to
obtain independent 0.5 second data [17]. In this work both 0.1 second and
0.5 second sample rates have been examined in the hope that most situations

will be covered.



Development of Methods for Predicting

Error in Wind Measurements

The function of the data reduction process is to abstract the desired
wind information from the raw data in the most accurate and efficient manner
possible. In this section we will examine the propagation of errors through
the data reduction process to the final wind measurements. It will be assumed
that the data reduction process consists of fitting raw coordinate data points
with a linear polynomial by the method of least squares, and using the first
derivative of this polynomial as the value of the velocity at the center of the
smoothing interval. This smoothing technique has been described by Engler,
Luers, and McCloskey [15], who have shown that linear polynomial smoothing
is a most desirable method in terms of reducing noise error for determining

wind data for ascending balloon sensors.

The nature of the noise error in the radar generated balloon coordinates
will be assumed to be random and Gaussian with no correlation among different
radar spherical coordinates at the same point in time and between values of
the same coordinate at successive time points. These assumptions, while not
always completely valid as mentioned above, usually suffice for FPS-16 data,

provided that the radar has been properly operated and maintained.

A final assumption will be made that the wind field in which the balloon
flies will have no vertical components. Although, as mentioned above, some
study has been given to the use of the Jimsphere as a sensor of vertical winds,
the present operational system is intended as a purely horizontal wind sensor.
Therefore, we will confine our analysis to errors in the measurement of

horizontal winds.

Derivation of Error Expressions - The coordinate system used in the

error analysis is shown in Figure 2. Raw radar data consists of a time series

of sets of the three values: range, R, elevation angle, £, and azimuth angle, A.



Figure 2. Rectangular and Spherical Coordinate Systems

The relation of R, E, and A to the rectangular coordinate system, is given by

x = R cos E cos A
y = R cos E sin A (1)
z = R sin E .

For the purposes of this analysis correction for the earth's curvature has
purp t y

been ignored.)

Applying the differential error approximation, small errors in %, y, and

z can be given in terms of errors in R, E, and A by

dx = (cos E cos A)dR - (R sin E cos A)dE - (R cos E sin A)dA

f1

dy (cos E sin A)dR - (R sin E sin A)dE + (R cos E cos A)dA (2)

de =

(sin E)dR + (R cos E)dE .

The definition of the error variance (mean square error) of a quantity

¢ 2 = < (dg? > - < dq>*?



where < dgq > denotes the expected value of an error dq. If the errors in R,

E, and A are assumed to be random then <dR> = <dE> = <dA> = 0. The error
variances (mean square errors) in x, y, and z, denoted by o‘xz, o'yz, and O'ZZ,
can be obtained from Equations (2) by squaring and taking the expected value

of both sides. The expected value of the cross terms (i.e., those containing
dRdE, dRdA, and dEdA) on the right hand side will be zero by the assumption

of independence of errors in the radar measured coordinates. The error

variances in the rectangular position coordinates are then

¢ 2 = (cos? E cos?A)e % + (R*sin*Ecos®A)o _? + (R? cos? A sin?E)g 2
b4 R E A
¢ 2 = (cos’Esin?A)s 2 + (R%®sin?E sin?A)e_2 + (R%cos?*Acos’E)s 2
y R E A
p) . 2 2 2 2 2
= + .
o (sin E)o‘R (R°cos E)crE (3)

To obtain velocity, the position coordinates are numerically differentiated
by fitting a linear polynomial to a given number, N, of points and using the
value of the derivative of the polynomial as the velocity at the midpoint of the
N point interval. The data fitting (or smoothing) is accomplished using a
least squares - Legendre polynomial technique as described in reference [15].
It can be shown that the error variance in velocity resulting from this technique

is given by

: _ 12 -~ 2
< = [N(Nz-l)Atz J"x (4)

? the variance of x position

where o‘}.{2 is the variance of x velocity errors, -
errors, N the number of points in the fitting interval, and At the time spacing
of these points. Similar expressions apply to the velocity error variances in
y and z. It should be noted that the Legendre polynomial smoothing technique,
and hence Equation (4), are applicable only if the data points are equally spaced
in time, which is the usual case with FPS-16/Jimsphere data. As previously

mentioned, the Jimsphere may be assumed to be a perfect wind sensor so that

W =x andwyzir, and

X
s % = g.t (5a)

s % = o.% (5b)



We have, by our assumption of a purely horizontal wind field, included
in Equations (5) on'1y x and y wind component errors. It may be mentioned that
the error in z position, L will introduce uncertainty in the altitude at which
to assign a wind measurement. However, the uncertainty in z is normally so
small (usually one or two meters at most) compared to the total 18 kilometer

altitude of the flight that the error is negligible.

12 7 [ .
2 _ - 2 2 2 2 2 2 2 2 i 2 2
T o C N(NZ 1) A8 _i cos“E cos Ao-R + R*(sin“E cos Aa-E +cos®Esin AO’A )]
(6a)
s % = _L_.] [coszE sinfAo % + Rz(sian sinfA o _%+cos?Ecos?’A z)]
wy N(N2 -1)At? R E ’A
(6b)

The methods of using O ox and GWY to specify errors in measured wind

profiles are presented in the following section.

Specifying the Accuracy of Wind Measurements - A complete description

of a wind measurement at a given altitude must include both a wind speed and
a wind direction or heading. Owing to this vector property of the wind field,
several different methods of specifying the accuracy of a wind measurement

are possible. In this section we will examine these methods.

Figure 3 shows a measurement of the wind vector, —\_;V, at an altitude,
z. The true value of the wind is shown by the vector VVt which may not have
the same magnitude or direction as VV If there are no vertical winds, both
\—I’Vt and W lie in a plane parallel to that of the x and y axes and may be
resolved into x and y components along these directions. The angles made
by ﬁt and W with the x axis (clockwise being positive) are denoted as
et and 8, respectively. The noise errors in the components of W have been
given in Equations (6). The problem, therefore, is how to use these
component errors to provide an estimate of the error in the measurement of

the wind vector.

10
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Figure 3. Relationship of the True, Measured, and
Error Standard Deviation Wind Vectors.

The first attempt at specifying the accuracy of a wind measurement
might be to just give the RMS errors T and o—wy’ in other words, giving
the accuracy of the x (zonal or downrange) and y ( meridianal or crossrange)
components of the wind. This approach is not desirable for two reasons.
First, of course, it does not give a direct estimate of the accuracy of the
measurement of the actual wind field at an altitude, and, second, the values
of T and (rwy are dependent on the orientation of the coordinate system

2

to the wind vector. It has been shown above that wa can be written as

s ¢ = K[COSZECOSZAO‘ 2y Rz(siancoszAc 2 tcos?’EsinAc Z)] (7a)
WX R E A
and
o-wyz = Klcos?’E sirleo'R2 + Rz(sin?‘EsinZA(rEZ + cosZEcoszAcrAz)]

(7b)

11



where K is a constant which depends only upon the smoothing technique.
Examination of Equations (7a) and (7b) shows that, as might be expected,

the values of o 2
WX

and o-wyz depend on the azimuth angle, A. Therefore,
this method of specifying the wind accuracy is dependent on the x-y

orientation of the coordinate system, which is not desirable.

The dependence on the coordinate system may be eliminated by adding

{7a) and (7b), that is, let
e =g i ? (8)

2

where 6. is to be defined as an estimate of the error in the wind measurement.
W

Substitution in (8) from (7a) and (7b) results in

2 _ 2 2 2 (1.2 2 2 2
oo = 2K[ cos EO‘R + R%(sin Eo-E + cos EcrA )] (9)

from which we see that the dependence on A has been eliminated. By giving
cr_&,z, the mean square error, or 0'.6V., the RMS error, of a wind measurement,

reference need not be made to a particular x-y coordinate system.

The approach of Equation (8), however, also has some drawbacks.
Equation (8) is not a measure of the expected error in the magnitude of W or
its direction, but a combination of both. In Figure 3 the measured wind
vector \TVis shown as the sum of the true wind vector, V—‘.'Tt, and a vector
representing the error standard deviation, 6’-_‘{7. The magnitudes of the x and
y components of 'o*'_v.;, are o and Uwy so that the mean square error of
Equation (8) is the squared magnitude of the ''vector deviation' of wind
measurement, o2 = | '63-\;/] « The value of o is seen to depend on both the
errors made in the determination of magnitude and direction of W. In many
applications there is a need to know the error in the magnitude of direction of

W separately. This information is not supplied explicitly by giving wind

error (as has been done previously [16,18]) as defined by

U—':M‘r 2+ 2 = ool +a.t .
W WX wy b's y

12



To obtain separate expressions for the RMS errors in the magnitude

and direction of W, we can express the magnitude, W = | W] » and angular

direction, 0, as

W= (w2 +Wy2)1/2 (10a)
and
Yy
8 = tan”! (10b)
WX

where Wx and Wy are the magnitudes of the x and y components of W.
Applying the differential error approximation, errors in W and 6 may be
given in terms of errors in W _and W as:

X y

MW 2 +w )1/ W 2 +w 2)1/2
X y x y

d = d +
w W Ve W dWy
X y
Ve v
= —= + 11
dw - dw_ " dWy (11a)
and
2 Yy 2 Yy
= -1 aw_ + (tan-t d
49 = Tw (tan W > Ve " 3w tan™ = ) AW,
X X y X
1
ds = WZ[deWy - WydWX] . (11b)
Squaring (lla) and (11b) gives
WX’- dwx?- + WYZ dWyz + wawydWXdWl
(dW)? = e (12a)
and
W 2dW 2 + W 24w % - 2W W dW dw

W4

13



Taking the expected value of each side of Equations (12a) and (12b),

WX w2 2W_W
2 2 ! 2 !
= + + <dw_dw >
“w Wz wx | W2 wy w2 W d y (13a)
and
’ Xz 2VVX
2 2 2 2 !
= + - < W >
o wt Twx wr  Twy w4 d xdwy (13b)

where the term <dwxdWy> is, in effect, the correlation in the errors in

Wx and W . This term may be expressed in terms of o 2, 2 and ¢

R E A

2

2 2

and ¢ ’

in much the same manner as o
WX wy

][ sinAcosA({cos’Ec¢ 2 + R®’sinfE o _%-R? cos’Ec z)] .

<dw_dw >
X y R E A

[ N(N2 - l)AtZ
(14)

Substituting (6a), (6b), and (14) into {13a) and (13b) after some sim-

plification yields

—_— + 2 2
iN(NZ l)AtZ] W [(W cosA WysmA) (cos’E o + R?sin*E o _2)

R E
_ : 2 2 2 2]
+ (chosA WysmA) R”cos Eo-A J (15a)
and
v 2 = 12 ] : [(W cosA - W sinA)?(cos’Ec 2 + R®sin’Ec¢ %)
8 N(NZ-1)at® ] w* y x R E
+ (W sinA + W cosA)zR2 cos’E s z] . {15b)
y x A

Equation (15a) gives the mean square error in the direction of the wind vector V

both in terms of the radar errors. It can be shown that o 2
W

desirable property of being independent of azimuth angle. Computing the wind

and 0_92 have the
error as in (15a) and (15b) allows one to quote a wind measurement and its

accuracy as a wind speed of, say, W meters per second icw meters per second

and a direction of 6°% 0'60. We believe that this method of specifying wind

14



error is most desirable, and we will use Equations (15) as the definitions of

wind error in the remainder of the report.

The quantities - and ¢, may be combined, if desired, to give the

0

magnitude of the vector deviation, o-_‘;], as given by Equation (8). If we return

)
and then add it to (13a) we see that

to T and ¢, as given by Equations (13) and multiply both sides of (13b) by W?

o'_.z = 0 2+W20' 2
w W 6
2 WZ WZ WZ
x y (e 2 [ y x_ 7 a2
= + + i
[wz e g wt T WE 1wy
2W W zwxwy j
+ - < >
[ o oL | <aw_aw
= o z+o' 2 .
WX wy

Thus, we have re-expressed Equation (8) in terms of the more useful

2 2

and o

uantities
q itie crw 5

Frequency Response - An important property of any smoothing method

is its frequency response or attenuation characteristics. Engler and Luers
[3] have presented a method of finding the attenuation of the first derivative
for smoothing and differentiating sinusoidal position data by the linear fitting

technique.

Figure 4 from [3] shows the attenuation factor D, as a function of the

"fractional smoothing wavelength', Q_, which is the fraction of a wavelength

f
over which the smoothing interval is taken. The attenuation factor gives the
magnitude of the velocity resulting from the smoothing in terms of the true
(sinusoidal) velocity, i.e., x g = Df}'ct where ;{t is the true velocity and ;{s
is the velocity resulting from the smoothing. The curve of Figure 4 may be
used to find the frequency response of a filter of any given length. The

attenuation, Df, for a given wavelength, ')\O, is given by the equation of the

curve as shown with Q. = S/)\o, where S is the smoothing interval length

- 15
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Figure 4. The Attenuation Factor, D_, vs. the Fractional
Smoothing Wavelength, Qf, for Linear Smoothing.

in meters. For values of Qf from 0 to about 1.43 the effect of the smoothing

is to continually decrease the amplitude at a given wavelength without producing
a phase shift. At Qf =1.43 Xo the smoothing has completely removed
oscillations of this wavelength from the data. Above Qf = 1. 43 the attenuation
factor becomes negative and the oscillations appear again but are 180° out of

phase with the true velocity sine curve.
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Error Analysis of Selected Wind Profiles

The method of error analysis derived in the previous sections has
been applied to various wind profiles selected to be generally representative
of those encountered in measurements by the FPS-16/Jimsphere system. Our
main purpose is to show how the errors in wind speed and direction depend
upon such factors as wind direction and magnitude (or alternatively the geometry
of the balloon trajectory), sample rate, smoothing interval length, and radar
noise error. The frequency response functions will also be presented for the

smoothing intervals used.

Constant direction wind fields - a ""worst case'' analysis - We consider

first situations in which the wind direction is constant over the entire 18
kilometer ascent. The launch point of the balloon is assumed, as in all cases,
to be at the radar site. As mentioned above, the quantities ¢ and 0—6 are

W

independentof azimuth angle so, for simplicity, the wind direction may be taken

as parallel to the x (downrange) axis. KEquations (15) will then reduce to

12 7
2 _ 2 _ i 2 2 2.2 2
O T T T [N(Nz—l)Atz ][ cos EO'R + R®sin EO'EJ (16a)
and
2
T
N _ _i__—‘[ 2 2 2]
T T W (N(Nz-l)m’- JRTcos"Ee 7 | : (16b)

For any given smoothing interval length, time constant, and wind speed vs.
altitude profile, the Jimsphere will have, at a given altitude, the largest slant
range and smallest elevation angle when the flight is made in a wind field of
constant direction. Therefore, we see immediately upon examining (16b) that
the value of T4 is a maximum when the wind field has constant direction. It

is not difficult to show that . in (16a) also takes on maximum values when R

is large and E is small.

Equations (16) were used to compute the RMS error in wind speed

and direction versus altitude for three constant direction wind profiles. The

17



profiles, shown in Figure 5 and Table 1, were from the "Design Scalar Wind
Speed Profile Envelopes (Steady State) for the Eastern Test Range'' presented
on page 5.172 of "Terrestrial Environment (Climatic) Criteria Guidelines

for Use in Space Vehicle Development, ' 1969 Revision, NASA TM 53872 [19].
The ''severe' and "moderate' profiles are the 95th and 50th percentiles,
respectively. The ''light' profile was obtained by taking wind speed values of
about half of the "'moderate' values. The values of the radar errors used
were those mentioned above for '"good' tracking conditions, namely TR 5 meters
and el 0.10 mils. Two values of the sample rate were used, two points
per second (At=0.5) and 10 points per second (At=0.1), All smoothing was
assumed to be by linear least squares fitting with Legendre polynomials, with
the slope of the line taken as the velocity at the midpoint of the smoothing
interval. A number of smoothing intervals were examined. Their lengths

in meters and the number of 0.1 or 0.5 second points which they contain are
given in Table 2. In every case a constant rise rate of 5.0 meters per second

was assumed.

TABLE 1
CONSTANT DIRECTION WIND PROFILES

Altitude Range Shears (1/sec)
(kilometers) Light Moderate Severe
0 to 10 0.0017 0.0041 0.0060
10 to 14 0.0 0.0 0.0

14 to 18 -0.0017 -0.0052 -0.0083

Ground Wind
Speed(m/s) 3.3 6.0 15.0

The results of these calculations are shown in Figures 6 through 13. Two
types of plots are pre sented: 1) the variation of RMS wind speed error (crw)
and the RMS wind direction error (¢ e) with altitude and 2) the variation of o
and o . with smoothing interval length for several representative altitudes.

0
The plots of ¢ and o g versus altitude are divided into two groups, the first
w
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Light Moderate Severe

Altitude (km)

10 20 30 40 50 60 70 80
Wind Speed {m/s)

Figure 5. Constant Direction Wind Profiles.

TABLE 2
SMOOTHING INTERVALS

Interval Length Number of 0.1 Second Number of 0.5 Second
(Meters) Data Points Data Points
10 21 , 5 -
25 51 11
37.5 76 16
50 101 21
100 201 41

19
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in Figures 6 through 8, for a time constant (At) of 0.5 and the second, Figures
9 through 11, for At = 0. 1. All three wind profiles are included in each group.
Four plots of T and T4 versus smoothing interval are given in Figures 12 and
13, all for the light wind profile. Finally, in Figure 14 the X-Z balloon
trajectories for the three wind fields are shown along with several elevation
angles for comparison. In some figures, sections of the curves are shown as
broken lines and vertical broken lines appear at certain altitudes. The broken
sections of the curves indicate slant ranges above 100 km. The curves are
terminated prematurely if the slant range exceeds 150 km. The left most

vertical line indicates an elevation angle of 10° and the right most vertical

line an elevation of 50.

The effects of the variations of altitude, smoothing interval length,
and time constant expected from an examination of Equations (16) are apparent
in the figures. In all the plots of T and T4 versus altitude we see that o
shows a small increase with increasing altitude whereas o, increases rapidly

¥ T

with altitude. These variations may be understood by examining the terms

(cos?’E O'RZ + stin"‘Eo-Ez) of (14a) and (R?cos’E crA‘")/WX2 of (14b). For

the first few kilometers of the flight, elevation angles are relatively large

(30 to 500) and slant ranges small (1 to 3 or 4 kilometers). In these regions
more of the balloon motion appears as elevation angle change than later where,
at higher altitudes and larger slant ranges, elevations are small (5 to 100) and

almost constant. If the terms (coszE(rRz) and (RZ sin’E crEz) of crw?‘ are

evaluated for various altitudes, it will be seen that the former is always much

2

greater than the later. Therefore, the behavior of o-w is primarily that of

2

(cos?‘Eo—RZ) and, since o-R is always constant, almost that of cos’E. So,

at low altitudes, ¢ 1increases as elevation decreases with z, and at medium

w
and high altitudes . becomes almost constant as more and more of the balloon
motion lies along the slant range direction. The expression for 0'62 does not

contain the cos’E chz term, but contains the term (R? cos’Eq 2)/WX2 . The

A
behavior of this term is to constantly increase with increasing altitude and

range so that ¢, always increases. For the particular wind profile shapes

0
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used in our examples, Wx increases to 10 kilometers, then remains constant
to 14 kilometers and finally decreases thereafter. Being the denominator

of the fraction, the added effect of Wx is to slow the increase of T to ten
kilometers, not effect the value between ten and 14 kilometers, and then to aid
the growth of g to 18 kilometers. The light wind profile shows the altitude
effect on T to the greatest degree since large values of elevation and smaller
slant ranges occur in that case. The altitude effect on Ty is largest in the
severe profile where large slant ranges cause large direction errors.

The effects of smoothing interval length and time constant enter through
the term {f\l—ﬁ-\r-il-zl)—Atz] in both Equations (16). Holding the time constant, At,
fixed and increasing the length of the smoothing inte rval, i.e., increasing the
number of points, N, makes the term smaller and so decreases the value of
L. and Ty Since N appears to approximately the third power in the denominator
the decrease is quite rapid at first and much slower later, as noted in Figures
12 and 13. For example, in the light wind case with a At of 0.5 second,
increasing the smoothing interval from 10 to 25 meters reduces the RMS wind
speed error from about 3.0 meters per second (at 10 kilometers) to about
0.9 meters per second, while an increase from 35 meters to 50 meters results
in a decrease from about .60 meter per second to about 0.35 meter per second.
To hold the smoothing interval length fixed and vary the time constant requires
not oniy varying At but changing the number of points, N, in a consistent manner.
For example, smoothing over 25 meters of altitude requires 51 0.1 second data
points or 11 0.5 second data points (see Table 2). The increased number of
points obtained by using a smaller value of At serves to reduce the value of the
term (712/N(N2 -1)At?) since N appears to power one higher than At. The
smoothing interval length, S, in meters may be expressed as S = (N-I)Ati
where 7 is the rise rate. If we rearrange the above expression as
At = S/(N—l)i and substitute into the factor 12/N(N? -1)At?, the factor becomes
12(N—1)Z'z /N(N+1)S* which for large N is approximately 1272% /NS®, Therefore,
if the smoothing interval, rise rate, etc. are fixed and At and N allowed to vary,

the RMS errors in wind speed and direction are (by Equations (14)) inversely
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proportional to the square root of N. For 25 meter smoothing with At = 0.1,

the value of [12/N(N?-1)At? 11/2 i5 0.0951 while for At = 0.5 the value increases
to 0.1907. Comparing, for example, the moderate wind profiles for 25 meter
smoothing at ten kilometers, we see that the value of T for the half second
time constant is 0.95 meter per second while for the tenth second At the

value is 0.475 meter per second. A 50% increase in accuracy is achieved

by using the smaller sample spacing.

Summarizing the constant direction results, the general behavior of
the wind speed RMS error for a given smoothing interval and time constant is
to remain almost constant over the entire altitude range. The RMS direction
error rises throughout the flight, especially sharply above 14 kilometers.
Smoothing interval length and sample spacing (time constant) have a large
effect on both wind speed and direction error. The best accuracy is achieved
when many closely spaced points are used with long smoothing intervals, as
must certainly be expected since more data is made available for "averaging

out" the random noise errors.

Frequency response. - In choosing a particular smoothing interval

length, the attenuation properties of this filter must be considered in addition
to the noise suppression ability. For the filter lengths shown in Table 2,
Figure 15 presents their frequency responses to sinusoidal oscillations in

the data computed by the method outlined in a previous section. The velocity
attenuation factor, Df, is plotted as a function of wavelength., A wind profile
may be considered to have an overall shape such as those used above with the
smaller details represented by sinusoidal wind oscillations superimposed on
the gross profile. This allows the use of Figure 15 with the above noise error

plots in an evaluation of a particular smoothing interval.

The figure also shows the response of the balloon (taken from Figure 1)
and the wavelength region of the aerodynamic oscillations. With regard to the
balloon's response, we see that it is much more responsive to velocity changes

than any of the smoothing lengths, so that the ability of the Jimsphere system
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to detect fine wind details can be considered to be limited by the attenuation
characteristics of smoothing technique. Smoothing out of the self-induced
oscillations provides a convenient lower limit for a smoothing length. A length
of 37.5 meters (16 0.5 second or 76 0.1 second points) removes almost all of
the oscillations in the 26 to 21 meter band, while keeping 90% of the amplitude
of 80 meter waves, a good frequency response. Shorter filters, e. g. 25
meters, may be used, but will retain some of the self-induced motion. Longer
filters,” while further reducing noise error, significantly attenuate longer

wavelengths and so destroy much of the fine detail of the wind field.

Varying Direction Wind Fields. - In order to examine the effects of

changes in wind direction with altitude, Fiquations (15) were applied to a wind
field in which the direction changes linearly through 90 degrees of azimuth
from the surface to 18 km. The wind speed profile employed was the light
profile (Figure 5). Figure 16 shows the x-y and x-z paths of the balloon
throughout the flight. Plots of the RMS wind speed and direction errors as
functions of altitude and smoothing interval were made for several filter
lengths using the 0.5 second time constant. These plots are shown in Figures

17 and 18.

The wind speed error for this situation is not very different from the
constant direction cases examined above. Values of v, are relatively constant
throughout the flight, especially for the longer smoothing intervals. Comparing
the magnitude of the T for 25 meter smoothing in Figure 17 to the corresponding
value for the constant direction case, Figure 6, shows little difference in the
values obtained in the two cases. This may again be attributed to the dominance

2

2 over the terms with R%¢ and indicates

R E
that wind speed error is relatively independent of direction. Similarly when

of the terms containing cos’Ec

the wind direction errors are compared for the constant and changing direction
causes, little difference is found between the two situations. Near the end of
the ascent the accuracy of the changing direction case is slightly better than

the constant case due to the shorter slant range values involved. The plots
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of o and g VS- smoothing interval are essentially similar to those for constant
direction. It should be noted that we have chosen to analyze a case of a
"moderate' change in direction with altitude. Situations could be imagined, of
course, where the wind direction changes by 180 degrees or more so that

larger elevation angles and short slant ranges might occur near the end of the

flight. Such situations, however, were not considered to be realistic and so

were not examined.

Two '"Special Case' Wind Profiles. - Two wind speed profiles of special

interest were analyzed assuming constant wind direction. The first profile was
that of a '"jet stream'' situation, a relatively thin layer of high wind speed
centered at about 12 km. The second was a "'calm'' profile in which wind speed
remained at a relatively low value over the whole flight. The particular shapes
of these profiles were obtained from two actual Jimsphere tests, Nos. 5364
(Jet stream) and 6610 (calm), made in 1966 at the Eastern test range. Figure
19 presents these profiles as taken from pp. 5.196 and 5.197 of [19]. In
order to make these profiles able to be input to the computer program which
performed the error calculations, they were approximated by profiles composed
of linear segments. These segmented profiles are also shown in Figure 20.
Plots of . and 0g VS- altitude for both profiles are given in Figures 21 and 22.
Considering first the jet stream profile, the values of O of each smoothing
interval are again relatively constant reflecting the dominance of the cos’E
term. The magnitudes of the RMS errors are about the same as the moderate
constant direction profile of Figure 7. Direction error shows an overall
behavior much like the moderate profile except for a ''dip' in the high wind
speed region around 12 km. This is explained by noting that the expressions
for o'eZ (13b) or (14b) have W? in the denominator which, having a large value
in these regions, reduces the value of cre. For the calm profile the o'W curves
are very flat. This reflects the rather high ground wind speed and the small
shear so that even though the wind speed is low at the upper altitudes the
balloon has an appreciable slant range above 2 km. The curves for direction

error rise smoothly to values somewhat above the values for the moderate two

dimensional case, again showing the effect of large slant range.
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Summary. - Several general conclusions based upon the above results
can be made concerning the nature of wind errors in the FP5-16/Jimsphere
system. These conclusions are listed below.

1. The trajectory of the Jimsphere is usually of such a shape that low
elevation angles and small changes in elevation angle occur after the first one
or two kilometers ofaltitude. The majority of the balloon motion is then along
the range direction. Consequently , the error in wind magnitude is primarily
dependent on the range error, and since range error is independent of range,
L is almost independent of altitude (for ranges within the capabilities of the
FPS-16 radar). Wind direction error, however, is a strong function of range
and thus of altitude.

2. The plots of smoothing interval length vs. RMS error in wind magnitude
or direction show that smoothing lengths in the 25 to 50 meter region are
most desirable in terms of noise error and frequency response. Filters of
these lengths proved a significant reduction in noise error over shorter filters,
and are not much poorer than filters of greater length. In particular a filter
length of 37.5 meters and a time constant of 0.5 second will provide wind
magnitude RMS error below 0.6 meter /second and direction errors below
2.5 degrees (below 1.0 degree for altitudes less than 14 km.) for the severe
wind conditions (Figure 8). The 37.5 meter length will smooth out almost
all of the self-induced balloon motion and yet retain about 0.9 of the amplitude
of waves of 80 meters in length (Figure 15).

The effect on the wind speed and direction errors of a wind field with a
moderate change in direction is slight. Similarly the results for two special
case profiles were little different from the results obtained with the normal
profiles. Both of these observations may be again attributed to the particular
shape of the Jimsphere trajectory in which most of the balloon motion lies
along the range direction.

3. For a given smoothing interval length, the least squares linear
smoothing technique provides RMS errors in wind speed and direction which

are inversely proportional to the square root of the number of independent
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data points in the interval. It is therefore desirable to obtain the closest

possible time spacing of data points when using any length of smoothing interval.
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OPTIMUM RISE RATES FOR WIND MEASUREMENTS

For balloon tracking with an FPS-16 radar, there are two quantities
that essentially determine the accuracy which is possible for fine scale wind
measurements. They are the rise rate of the balloon and the wind field to
which the balloon responds. These two quantities determine the geometric
position of the balloon relative to the radar site. Light wind fields will result
in a shorter distance between the balloon and radar than a severe wind field
and consequently, less severe tracking conditions. A fast rise rate will also
provide, at a given altitude, less severe tracking conditions than would occur
with a slower rising balloon, On the other hand, a fast rise rate is undesirable
because, as it passes through a given altitude layer, it provides fewer radar
data points than a slower rising balloon. Fewer data points produce less
accuracy in a wind measurement. Consequently, for a given wind field, an
optimum rise rate exists which provides a balance between desirable and
unde sirable effects of both fast and slow rise rat balloons. In general, it will
be shown that a stronger wind field yields less wind measurement accuracy
than a light wind field and that the optimum rise rate is faster for strong wind

fields than for light ones.
The error in the wind magnitude has previously been derived as:

(W2¢ 2+W2323;s 2 2W W
X Wy
WZ

<dw dw > (13a)
X y
where

w2 o= w?2+Ww? .
X y

The optimum rise rate for a given wind field is defined as that rise rate which
minimizes Equation (13a). The error in wind direction has not been incorporated
into a definition of optimum rise rate for two reasons: a) Meteorologists are
generally more interested in having a very accurate estimate of wind

magnitude that may be in error by a few degrees direction than the converse
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and b) the error in wind direction is even more sensitive to the wind profile
than the error in wind magnitude as shown by the factor W* in the denominator

of Equation (13b).

As in the case of the Jimsphere, the assumption that the balloon is a
perfect wind sensor is made throughout this section. That is, the balloon
velocity X equals the wind velocity WX, and also, therefore, Oy O In
a later section, the validity of this assumption for various diameter balloons
is examined. The error in the wind magnitude (hereinafter referred to as

wind error) as given by Equation (13a) is a function of the wind field and the

error in the velocity measurements of the balloon.

For linear smoothing over N position points the error in the balloon
velocity has already been given by Equation (4) as

12 o'XZ
i T NN DaR @
A substitution of Equation (4) into Equation (13a) shows the minimization
of Equation (13a) requires the following:
a) A specification of the wind field by the components Wx and Wy
b) The time constant At of the radar
c) A definition of the number of points, N, used in the linear smoothing

d) A determination of o which is a function of the radar capabilities,

the balloon rise rate, and the wind field.

The four inputs to Equation (13a), that is, a, b, c, and d, are discussed

in the following paragraphs.

Specification of Wind Field - Unique specification of a wind field

requires two profiles - a wind magnitude versus altitude profile and a wind
direction versus altitude profile. The error in the wind magnitude in general
depends on both of these profiles. The only exception to this is if the wind
direction is constant at all altitudes (i.e., throughout the flight). For this

case, it has been shown that the error in wind magnitude is the same for all
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directions so that any direction may be chosen. Each wind profile that
exhibits a change in wind direction provides a unique wind error profile.

It is obviously impossible to assume all reasonable types of three-dimensional
wind profiles and find an optimum rise rate for each. What can be done is

to consider wind magnitude profiles only and assume the wind direction is

1

constant, a "'worst case'' analysis.

The wind profiles used to obtain optimum rise rates will consist of
wind magnitude profiles with direction assumed constant and along the X-axis.
In this case, the expression for error in wind magnitude, Equation (13a)

simplifies to

g 2 = ¢ ¢ . (16a)

As in the case of the Jimsphere studies, the three wind profiles chosen

were the light, moderate, and severe wind profiles presented in Figure 5.

Radar Time Constant At - The radar time constant, At, is defined as

the minimum time spacing between radar measurements that have independent
errors. The time constant is dependent upon the se rvobandwidth of the radar.
For an FPS-16 radar and a servobandwidth of 7, At is approximately 0.5

second; for a servobandwidth of 10, At is approximately 0. 1.

Determination of N - The number of points used in smoothing, N, can

be chosen so as to provide a wind measurement over a specified altitude
layer. N is related to the altitude layer, or smoothing interval by the

expression

S = (N-1)Atz (17a)
or
S
= - + 1 17b
N At z ( )

where S is the smoothing interval defined in units of meters. When minimizing
Equation (4) to find an optimum rise rate function for a given wind profile,

the smoothing interval will remain fixed for all altitudes. Since the rise rate
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of the balloon will vary with altitude, N will be chosen in a compensatory
fashion so that the right side of Equation (17a), the smoothing interval, remains
constant. A constant altitude smoothing interval provides the same frequency
response (ratio of smoothed wind measurement to true wind) at all altitudes.
The smoothing interval has initially been chosen as 25 meters. The frequency
response function for 25-meter smoothing as well as for ten-meter through

100-meter smoothing has been presented in Figure 14,

Determination of o= f(o-R, o-E, o‘A, 2, W) - In terms of radar errors

and the Cartesian Coordinates of the balloon's position ¢_ is given by
X

t L X X2 g (18)
“x T Xf+vi+z? "R xX2+Y: g A :

The factors Cr’ T g and o, are nominally taken as:

ch = 5 meters
O'E = +1 mil
O‘A = 1 mil .

The X, Y, Z position of the balloon depends upon the balloon rise rate
and the wind. As stated above, the balloon is as sumed a perfect horizontal
wind sensor so that: WX = X and Wy =Y. The X and Y position coordinates

are obtained by integrating the wind field. That is,
t
x =[5 ow o
t X
o
or

It (az+ B)at (19)
[0}

>
u

where the light, moderate, and severe wind fields given in Figure 5 are
specified in terms of linear segments Wx = Az + B for various values of the
constants A and B. The integration of Equation (19) requires than z be

expressed as a function of time. This is accomplished by taking into account
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the balloon rise rate. The balloon rise rate z is specified as a function of z.
Thus, the differential equation z = f(z) can be solved for an expression of
z = f(t). A substitution of z = f(t) into Equation (19) allows the determination

of x position.

Linear and quadratic functions of altitude have been chosen to define
the rise rate. The evaluation of the x-position (Equation (19)) for each of these
rise rate functions and the three linear segmented wind fields, light, moderate,

and severe, follows.

Linear Rise Rate - Let the rise rate be given by the linear function

z = P zty

where p and y are constants. The solution for t = f(z) is

R P (PN
p Y
or for z = f(t) as
Bt
z = l(—e—ﬁ—-‘l')— . (20)

A substitution of Equation (20) into Equation (19) gives

X = “0[%1 Pt +B] at . (21)

The solution of Equation (21) is

Bt Pt
(e -e ) + (B-é-y-)(t-to) . (22)

X = 8

“E

Equation (22) expresses the x position of the balloon in terms of the coefficients,
A and B, of a linear segment of the wind fields and the coefficients B and y of
the linear ris¢ rate function. A substitution of Equation (22) into Equation (18)
allows the estimation of the error in the x position o A further substitution
of Equations (17a) and (18) into Equation (4) determines the wind error as a

function of the rise rate parameters. By varying p and vy while holding all
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other parameters constant, the minimization of Equation (4) under the specified
conditions is permitted. The minimization is achieved under specified

conditions of fixed radar errors, a fixed wind field, and a fixed smoothing

interval.

Quadratic Rise Rate - For a quadratic rise rate, we have

z = oz +Bz+y .

The solution for t in terms of z when g2 - 40y >0 is

1 2az + B - g»

- = ( " 3

t q " 2az+[3+q/+K (23)
where K is a constant of integration and given by

K - . ll (ZCI,zo-i-ﬁ—q>
R 2az_+B +q

and
a = (B -4ay'/? .
Solving (23) for z explicitly yields:

_ B - a- (prq(et I
qt-gK 2.q)

z

. (24)
(2 ae

Simplifying Equation (24) by introducing new constants gives

eqt

K
——21 K
Z = - 1 t

where

The position x is determined by

(Az + B)dt
o

t
t

G ey
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or, in terms of Equation (25),

j ( . —HB—ypja .

-qt
+K2 1+Kzeq

Integrating gives

1
- —‘551 [t L gn (e ®x,) _‘ - AKy [t+—£n(1+Kze qt] + B, ‘
0 O 0

or

K dto +K,
_qt
_A.K] In/ 1 +Kze ) . (26)
a | +K,e o

The alternate solution to the differential equation z = az +Bz t+y

when p2-4ay <0 is given as
-%\,,[tatn'l(————‘@'zc“z,+ ) -tan”(p—;)}
q'l‘ q>:~ . q>,~

where

2

gt = (day-pH)/E>0 .

Solving for z as a function of t gives

q*tan(q*/Ztr + taniﬁ /q¥%) - B

2a

The position x is determined from

It [t
x = 4y Wth = Jt (Az + B)dt

o] o
or
r't 9* @_ > N 1
= + - + d .
X ,' t Za {q tan( > t + tan” o [SJ> B_] t
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The solution is

\

g% -1 B
cos( t + tan J -
2 k)00 A
x = fan By T T 2a () Bl (27
cos(-q t + tan~! ) ° ©
2 q*/

A substitution of Equations (17) and (18) and either (26) or (27) into
Equation (4) allows the wind error to be written in terms of the parameters
¥ & P, and y of the quadratic rise rate. Numerical minimization of Equation

(4) can be achieved by varying these rise rate parameters.
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Wind Errors Fig;" Linear and Quadratic Rise Rate Functions
/fﬁ

Optimum Linear Rise Rate - In order to determine the linear rise

rate profile that minimizes wind error, a wide range of surface rise rates
and rise rate slopes was examined. Surface rise rates were varied between
two meters per second and ten meters per second. Both increasing and
decreasing rise rate slopes versus altitude were considered, The constraint
that the rise rate could not equal zero below 18 kilometers was invoked in
choosing slopes. The linear rise rate functions for surface rise rates from
two meters per second to ten meters per second are presented at the left

side of Figures 23 through 27. The light, moderate, and severe wind profiles
were chosen as wind input. The smoothing interval was fixed at 25 meters.
The direction of the wind was chosen as blowing along the X-axis. The Y
component of wind was chosenas W _ = 0. The simplified equation for error

in wind magnitude, Equation (4), is therefore applicable.

Figures 23 through 27 show the wind error for surface rise rates of
two through ten meters per second as a function of altitude and rise rate
functions for the three wind profiles. The correspondence between rise rate
curves and wind error curves is 1-1 order preserving. That is, the first
rise rate curve from the left corresponds to the first wind error curve, the
second rise rate curve corresponds to the second wind error curve, etc. In
all figures presented the dashed lines that sometimes appear on wind error
plots indicate slant ranges between 100 kilometers and 150 kilometers - the
11m1t1ng constraints of the FPS-16 radar. When the slant range exceeds
150 kilometers, the wind error plots are terminated - indicating that radar
tracking is no longer feasible. The broken lines indicate elevation angles of
10° and 5°; the first broken line from the right indicating 10° elevation while
the second line (when it appears) indicates 50 elevation. The better rise

rates on Figures 23 through 27 are those that decrease with altitude.
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Results from these figures show that a linearly increasing rise rate,
for any surface rise rate, is undesirable because the wind error increases
as altitude increases. Only cases where the rise rate is constant or decreases
with altitude show promise of providing acceptable wind errors. However,
rise rates which become too slow are also unacceptable because they produce
slant ranges and/or elevation angles which exceed FPS-16 tracking capabilities.
None of the rise rates, however, will provide even one meter per second
accuracy, over 25-meter smoothing, to 16 kilometers, under anything but
the light wind condition. The decision as to which is the best or optimum
rise rate depends upon the purpose or application of the measurement. For
example, if 25 meter winds are only required to 12 kilometers under light
to moderate wind fields, rise rate 2, Figure 24 (2nd rise rate from left on
Figure 24) and rise rate 1, Figure 25 are desirable. If, on the other hand,
data is required to 18 kilometers, neither of these rise rates is satisfactory
because of excessive slant ranges. In this case, rise rate number 2, Figure
25 is probably most satisfactory. It is also interesting to note that the normal
rise rate of the Jimsphere is between the range of number 2, Figure 24, and
number 2, Figure 25, and hence is about the best that can be expected for

the light and moderate wind fields.

Optimum Quadratic Rise Rate - In order to determine the quadratic

rise rate profile that minimizes wind error a wide range of the quadratic
parameters &, f , and y had to be chosen. The technique used to determine
practical bounds for these parameters is the following.

The parameters &, B, and y of a quadratic function z =oz? +pz + ycan
be characterized by three geometrically meaningful constraints. They are
a) the z intercept vy, b) the value of z where the function z = f(z) is a maximum
or minimum, in particular z = -8 /2a, and c) the value of the function at its
maximum or minimum, in particular 7 = 40ay-p2?/4a (see Figure 28). By
specifying these parameters, Y, B/2a, and 4ay-p?/4a, one easily solves
for o, B, and y. The purpose of working with y, p/2a, and 40y-B2/4a

is for the value of the geometric interpretation. Reality determines guidelines
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Figure 28. Geometric Interpretation of the Parameters Q,
B, and y of a Quadratic Rise Rate Function.

for what types of rise rate functions are physically practical. For a
reasonable range of values for surface rise rate the bounds were chosen as
two meters per second <y <10 meters per second. The range of values for
the z altitude where the maximum and minimum rise rate occurs was chosen
as two kilometers < -f /2a <14 kilometers. The range of rise rate values

at the maximum or minimum was chosen as 1 <4ay-p%/4a <13 m/s.

Solving for & and § in terms of u = -B /2a and v = 4ay-ﬁ2 /4o gives

X~ Vv
a = 7
u
and
2v - 2y
B = a .
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et

Figures 29 through 43 show wind errors associated with the quadratic rise
rates defined by the ranges of variables specified above. Not all of the
defined rise rates are practical. Nevertheless, any practical rise rate is

reasonably approximated by at least one of the defined functions.

The wind error plots shown for linear and quadratic rise rate functions
(Figures 23 through 27 and 29 through 43) were derived under an assumed
radar time constant of At = 0.5 second and fixed smoothing interval of 25
meters. Since an FPS-16 radar may provide a time constant as small as
At = 0.1 second under a high servo-bandwidth and optimum tracking conditions,
it is of interest to determine the effect of a change in the time constant on
wind errors. Of equal interest is the effect a change in the smoothing interval

will produce on wind errors. The following two sections are addressed toward

these problems.
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Effect of Smoothing Interval on Wind Accuracy

Recalling Equation (17a) the smoothing interval, S, is given by
S = (N-1)z At (17a)
and number of points, N, associated with the smoothing interval, S, as:

N = ~—— +1 ) (17b)

z At
Substituting (17a) into the wind error equation for a constant directional
wind field (Equation (4)) gives the wind error in terms of the smoothing interval.
That is:

120' 2

wX ;( S S 2
v 0 A
z At ( )( z Ot ) t
If the smoothing interval, S, is changed to S' then the ratio of wind

errors from the S' interval to the S interval is:

. IRy
o8 [ (o s +8(s)

& 5 5! N ' (28)
T w (éAt +1><'zAt +2)\S)

For the case when the original smoothing interval S is 25 meters (Figures

23 through 27 and 29 through 43) and At = 0.5 second, Equation (28) becomes:

e [(2 (2 o) 17
7 w23 3‘§— +1 /(E—S—'+2 )<S'> ) (29)

Equation (29) defines the multiplicative factor that transforms wind errors
from any of the previous Figures 24 through 27, 29 through 43, for 25 meter
smoothing into wind errors for any arbitrary smoothing interval S' Equation

{29) is plotted as a function of S' and z in Figure 44.
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10 meters

S' = 25 meters

S' = B0 meters

1 —
S.= 18 5geer 00 m

L1+ 1t )03yt 1o+ ¢ 14 gy 41 1 % t 1
2 4 6 8 10 12 14 16 18 20 22 24
z, Rise Rate {m/sec)
Figure 44. Multiplicative Factor to Convert Wind Error for 25 Meter

Smoothing into Wind Error for 10 Through 100 Meter Smoothing.
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The following example illustrates the use of Figure 44 to determine
wind error for various smoothing intervals. For the linear rise rate function
number 1 (Figure 26) the rise rate is z = 4 meters per second at 9 kilometers.
The corresponding wind error for 25 meter smoothing in a moderate wind
field is 0.7 meter per second. If the smoothing inte rval were ten meters
then the wind error would be 0.7 x 3.4 = 2.38 m/sec where the multiplicative
factor 3.4 is derived from the S' = 10 meter line from Figure 44, For 75

meter smoothing, the wind error would be 0.7 x . 20 = .14 meter per second.

Figure 44 shows the multiplicative factor O'W(S)/O'W(ZS) to be, in most
cases, a weak function of z. The multiplication factor can be approximated
independently of z by ignoring the lower order terms of Equation (29). Egquation

(29) then simplifies to

R Y
7 _(25) =~ 15

which is independent of z. Using the previous example and the approximated
multiplication factor, the ten meter smoothing wind error would be 0.7 x
3.95 = 2,77 meters per second and the 75 meter smoothing wind error

0.7x .19 = .13 meter per second.
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Effect of the Time Constant on Wind Accuracy

The wind errors shown in Figures 23-27 and 29-43 assume typical
FPS-16 coordinate errors of 0.1 mil in azimuth and elevation and five meters
in slant range. A time spacing of At = 0.5 second between independent points
is also assumed. The amount of decrease in wind error that would result
under ideal tracking conditions where the time constant At could be as small
as 0.1 second can be shown as follows. If the time constant is changed from
At to At' while the smoothing interval remains fixed, then the number of
points in the smoothing interval will also change. The relationship between

the time constant, smoothing interval, and number of points is:
S = (N-1) Atz .

Holding S fixed while changing At and N to At' and N' gives the equality

(N-1)At = (N'-1)At
or
N' = (N-l)% f1 . (30)

The ratio of wind error when the time constant is At' to wind error when the

time constant is At is:

12¢
o {(Ath) =
w _ N'(N' -1)At'? (31)
s (aY) 120 °
w x
N(N? - 1)At?
Substituting Equation (30) into (31) gives
I
O—W(At) ~ N(NZ _I)At 1/2 (32)
c (AY) [ At 7 At }
-1 + == +2 1At
W (-1 1_1[ (N-D35 (N-1)At

where N is the number of points in S with time spacing At. Equation (32)

can be approximated by
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O'W(At’) _ [At' 1 1/2

Ny (33)
W

which is independent of N.

A plot of Equation (32) for a At = 1/2 and various values of At' is given
in Figure 45. The following example illustrates the use of Figure 45. For the
linear rise rate function number 1 (Figure 26) the wind error for 25 meter
smoothing in a moderate wind field at 9 km is 0.7 m/sec. The rise rate at
this altitude is z = 4 meters per secand and the time constant is At = 1/2.,

The number of points in the 25-meter smoothing interval is

If the time constant is changed to At' = 0.1 second, the multiplicative factor
from Figure 45 for N = 13.5 is 0.49. Thus, the wind error resulting if the
time constant were 0.1 second is 0.7 x 0.49 = 0. 34 meter per second.
Similarly, for a time constant of two seconds, the resulting wind error

would be 1. 11 meters per second. If the approximation formula, Equation (33),
were used, the resulting wind errors for At = 0.1 and At = 2.0 seconds would

be 0.7 x 4.5 = 0.31 metet per second and 0.7 x 2 = 1.4 meters/second.
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.o —
o (At") a0 At' = 2 sec ]
v
o (1/2)
w N ]
At' = 1 sec
1.0 At' = At = 0.5 sec
At' = 0.3 sec
| At' = 0.1 sec _
0 | ] | | ] ] | ] ]
10 20 30 40 50

N, Number of Pcints (At = 1/2)

Figure 45. Multiplicative Factor to Convert Wind Error When the Time
Constant is 0.5 Second into Wind Error When the Time
Constant has Other Values.



BALLOON DIMENSIONS

The previous sections have shown the wind accuracy that will result
from various rise rate functions under given wind conditions. It is now
realistic to examine what balloon dimensions are required to provide a specified
rise rate function. This question cannot be answered without first specifying
what type balloon is being considered (e.g., a constant volume spherical balloon,
expandable balloon, etc.). To answer this question for expandable spherical
balloons the following approach can be pursued. It will be shown in this section
that to achieve a desired rise rate at a specified altitude there is only one
radius smooth (or one radius roughened) spherical balloon that can achieve
these results,.consequently, a balloon can be designed to provide a specified
rise rate profile by determining the balloon radius needed to achieve the rise
rates specified by the profile at various altitudes. A balloon manufacturer
can then determine what type expandable balloon will achieve the proper radius
at the proper altitude. For other type balloons other methods can be used to
provide a specified rise rate profile. A change in the skin thickness, an
additionalrballast, or a relief valve could change the rise rate profile. In
fact, any change in a parameter of the rise rate equation (derived in this
section) wouid 7effect the entire rise rate profile. A study of the effect
produced by a variation in each parameter of the radius equation would be
valuable in determining what parameters can best be manipulated to achieve
various types rise rate functions. The discussion presented in the following
section has stopped short of a sensitivity analysis of the rise rate equation.
What is presented is a means of determining what radius balloon will provide
a specified rise rate at a specified altitude. The altitudes specified are 10 km
and 14 km. The results have direct application for expandable balloon design
for smooth and roughened spheres. In addition, the technique presented is
intended to serve as a guide to anyone who wishes to consider the variation of

other parameters in the rise rate equation.
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Balloon Radius Versus Rise Rate - The equation of motion in the vertical

direction of a rising sphere is given to a good approximation as:

- 1 .
+ = - = z _
(mskin mgas)z 5 P CD Az p volg + (mskin+ mgas)g (34)
where
m are mass of the balloon skin and inass of the contained

skin’ gas
gas, respectively,
vol is volume of the balloon,
Z, z are vertical velocity and acceleration,
g is gravitational acceleration = 9.8 m/sec?,
p is density of air,
CD is drag coefficient,
and

A is the cross-sectional area of the balloon.

Over small regions of the atmosphere, the density can be considered
constant and thus the balloon will approach an equilibrium or te rminal

velocity when the acceleration approaches zero.

Under this condition, Equation (34) becomes

1l
o
.

l .
—EpCDAzZ - pvolg-l—(mS .t m g (35)

kin gas
The skin mass can be written as

- 36
Mokin - P skin &% A (36)

where As is the thickness of the skin and AS is the surface area.

Smooth Spherical Balloon - For a smooth spherical balloon, the surface

area is:
A = 4nr? .
s
Equation (36) for a smooth sphere becomes

- 2 . 37
Mskin - Pskin®® 47T (37)
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The mass of the gas is given by

m = p vol . (38)

m = mrip . (39)

gas
The cross-sectional area A defined in Equation (35) is given for a sphere as:
A = wrl . (40)

A substitution of Equations (37), (39), and (40) into Equation (35) and solving
Equation (35) for r, the radius of the sphere, gives the radius equation for

smooth spheres:

-C_z% + 8Asg skin

ro= 3 £ . (41)
Je(1-Be)
3 P

Equation (41) can be used to estimate the radius of a smooth sphere
required to achieve a specified rise rate (z). The quantities that must be
known or estimated to solve Equation (41) for r are: a) the density of the
material used to make the sphere, b) the thickness of this material, c) an
estimate of the drag coefficient of the sphere, and d) the density of the air
at the altitude where the specified rise rate is desired. Of these quantities,
only (c), an sstimate of the drag coefficient, provides any degree of difficulty.
The drag coefficient for a slow-moving sphere (Mach®0) is sketched as a
function of Reynolds number in Figure 46. The sharp change in the drag
curve occurs at the approximate Reynolds number of 2.5 x 103, An ascending
sphere will decrease in Reynolds number as it ascends. Thus, it will traverse
the drag curve sketched in Figure 46 from right to left. At Reynolds numbers
greater than the critical value (2.5 x 10%), the flow around the sphere is
turbulent and a smooth sphere will experience random self-induced aerodynamic
oscillations. These random oscillations make small scale wind determination

impractical with a smooth sphere. After passing through the critical Reynolds
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Figure 46. Drag Curve for a Smooth Sphere.

number, the flow around the sphere becomes laminar and the self-induced
motions sharply diminish. Small scale wind measurements are again possible.

For the sake of design engineering, a satisfactory estimate of the drag coefficient

function can be taken as:

C

.45 for R <2 x 105

D
Cp = +30 for 2 x 105<R <4 x 105 (42)
C, = 15 for R >4 x 10° .

This function can be used to estimate CD if Reynolds number can be determined.
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Reynolds number is given by the expression
R = 2pzr/p (43)

where | is the coefficient of viscosity of air and is a weak function of altitude.
To achieve a desired z at a specified altitude, the Reynolds number can be
dete rmined from Equation (43) for any proposed radius. The determination of
R allows the estimation of CD from Equations (42) which in turn is needed

in Equation (41).

An example will illustrate how Equation (41) can be used to determine
the balloon radius needed to achieve a desired rise rate at a specified altitude.
The following assumptions will be made about the balloon:

a) The balloon is a smooth sphere of radius r.

b) The skin is mylar of thickness 1/4 mil = 6. 35 x 10 ~°m.

c) The sphere is filled with helium at ambient pressure and temperature.

d) No additional mass is attached to the skin.

Under these assumptions, the evaluation of Equation (41) for a rise rate

of 2z = 10 meters per second at 10 kilometers altitude is illustrated below:

z = 10 m/sec

z = 10 kilometers
= 414 3

P lokm - 14eT/m

As = 6.35x107°

g = 9.8 m/sec?

lp = 4/29

= l.2x 106gr/m3 .

P helium

P mylar

CD = f(R) and is either .45, . 30, or .15, depending upon r. Equation
(41) can be evaluated for each of the three values of CD to determine three
values of a radius r. For each radius r, an associated Reynolds number can
be calculated. The Reynolds number then uniquely determines the CD
corresponding to that radius. If the corresponding radius and CD match the
original chosen CD for that radius, a valid combination has been found. If not,

the originally chosen CD and radius are an inconsistent combination that will
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not solve Equations (41), (42), and (43) simultaneously. That is, from Equation

(41),

- 2. f - u4
- 1. 40 f - . O
I - . ;3 fOr CD - . 15 .

The Reynolds numbers associated with each of the above radii are derived

from Equation (43) as:

}1
I

2,06 R = 2rpz/u = 1.2x106>4x105—’CD:.15
r = 1,40 R
r = .73 R

7.9x 10% >4 x 105 - cD = .15
4,1 x 105 >4 x 105 —'CD:.IS .

Applying Equations (42), the only consistent triplet of r, R, and CD is:

r = .73 R:4.lx105,andCD:.15 .

Thus, a 0.75 meter radius smooth sphere, made of 1/4 mil mylar, filled
with helium, with no ballast or additional mass, will, at ten kilometers,
have a rise rate of 10 m/sec. This sphere, however, will experience
difficulties in obtaining wind measurements since it will be in a turbulent

flow condition and exhibit random aerodynamic oscillations.

The radius necessary to achieve other rise rates at altitudes of ten
and 14 kilometers under the same four assumptions (a, b, c, d) is given in
Tables 3 and 4. The radii given in these tables are the only radii that will

provide the desired rise rates under the stated assumptions.

As seen in Tables 3 and 4, large rise rates of 10 to 20 m/sec are
possible with smooth spheres of modest diameters. One difficulty with using
spheres of these dimensions for small-scale wind determination is the
turbulent flow condition associated with the CD = .15, The random aerodynamic
motions associated with turbulent flow make all but the gross wind structure

impossible to observe from the trajectory of *he sphere.
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TABLE 3

RADIUS AS A FUNCTION OF % AT 10 KILOMETERS ALTITUDE

FOR SMOOTH SPHERE

Rise Rate (z ~ m/sec)

4 6 10 15 20
2 .15 .73 1.56 2.73
)]
g8 .30 .54
N o
S . 45 .14 .38
TABLE 4
RADIUS AS A FUNCTION OF z AT 14 KILOMETERS ALTITUDE
FOR SMOOTH SPHERE
Rise Rate (z ~ m/sec)
2 4 6 10 15 20
2 .15 1.61 2.78
']
op
19
5 g .30
-
) . 45 .20 .44 .84
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Rough Spherical Balloons - Roughening cones added to the smooth sphere

have shown, in the case of the Jimsphere, that the random motions of a smooth
sphere can be transformed into regular oscillations over a very small
frequency band. These oscillations can then be removed from the trajectory
by a properly designed filter. However, a secondary effect of adding the
roughening cones is a change in the drag coefficient curve. For the Jimsphere,
the dray coefficient has been derived by Fichtl, DeMandel, and Krivo [12] to
be as shown in Figure 47. Thus, the roughening elements in increasing the
sphere stability also increase the drag coefficient at supercritical Reynolds
numbers. Thus, the entries in Tables 3 and 4 would not be valid for roughened
spheres because of the different drag coefficient curve. For engineering

application, the drag coefficient curve for the roughened sphere will be taken as:

C, = -47 for R<1.2 x 10°
G, = .60 for 1.2 x 10° <R < 2.5 x 105 (44)
CD = .72 forRZZ.leO5 .

The skin mass of the roughened sphere also differs from that of a smooth
sphere because of the roughening elements. It will be assumed that the skin
surface area of a rough sphere is 1.4 times that of the corresponding smooth
sphere of the same diameter. The other balloon associated variables mg
and A needed to derive the radius equation for roughened spheres can be

taken as the corresponding parameters for smooth spheres.

The radius equation for roughened spheres is
o

—CD22+11.2ASg"—SH
 Se(r P '
L2 1__ga._s_

38 p

Solving Equations (43), (44), and (45) simultaneously for r determines the
radius of roughened spheres necessary to produce given rise rates at specified
altitudes. Tables 5 and 6 show the radii required to produce 2 to 20 m/sec
rise rates at 10 and 14 kilometers. A comparison between Tables 3 and 4

and Tables 5 and 6 shows that larger radii are required to produce a given

89



Drag Coefficient ~CD

.75

.
o~
(o]

— Roughened Sphere

N
o
|

.
w
o
1

Smooth Sphere

.

—

n
{

i 1 1 1 [ I O |
105 2 x 10° 4 x 10° 10°

Reynolds Numbers

Figure 47. Comparison Between Drag Curve
for Smooth and Roughened Sphere.

90



Drag
Coefficient

Drag
Coefficient

RADIUS AS A FUNCTION OF z AT 10 KILOMETERS ALTITUDE

TABLE 5

FOR ROUGHENED SPHERE

Rise Rate (m/sec)

15 20
. 47 17
. 60 .52
72 1. 24 3. 29 7.28 12. 87
TABLE 6
RADIUS AS A FUNCTION OF Z AT 14 KILOMETERS ALTITUDE
FOR ROUGHENED SPHERE
Rise Rate (m/sec)
2 4 6 10 15 20
.47 .25 . 50
. 60
.72 1.31 3.36 7.35 12.94
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rise rate from a roughened sphere than from a smooth sphere - particularly
for large z. This is because the drag coefficient is larger for rough spheres

than for smooth spheres, especially at supercritical Reynolds numbers.

Perhaps more practical than designing a large diameter balloon to
measure winds is to design a streamlined-non-spherical balloon possessing
a low drag coefficient at large Reynolds numbers and that does not possess
the random aerodynamic motions associated with its flow conditions. The
foregoing analysis that was performed for smooth and roughened spheres can
also be undertaken for other non-spherical type balloons. All that is required
is

a) A knowledge of the drag curve for the balloon.

b) An expression for the volume of the balloon.

c) An expression for the surface area of the balloon.

d) An expression for the cross-sectional area of the balloon.
Of these quantities, only the drag coefficient curve may be difficult to come by.

An expression for each of the other quantities can certainly be derived.

Wind Sensing Capability of Fast Rising Balloons - The previous section

discussed balloon diameters required to achieve specified rise rates. Of
equal importance is the ability of the balloon to re spond to the wind field.
That is, can one assume that the horizontal velocity of the balloon is the
wind velocity, or does the balloon's response sharply lag the wind response ?
One way of attacking this problem is to assume a sinusoidal varying wind

field versus altitude of the form:

W = A sin (wt) .

b,

Under this assumed wind field and assuming the balloon is a point mass,

it is possible to solve the equations of motion for the balloon velocity. The
amplitude of the balloon velocity oscillation can then be ratioed to the
amplitude of the sinusoidal wind field to determine the percentage response of

the wind field shown in the velocity of the balloon.
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If the sinusoidal wind field W_ = A sin wt is substituted into the
X
horizontal equations of motion and the resulting differential equation integrated
for the balloon velocity, the result is (Ref. [1], p. 78):

b t/K;
-, €
K

X =

+ A' sin (wt + ch) (46)

where

b is a constant of integration,

CpB = arctan(%) ,
m' = the apparent mass of the balloon,

and

ALl + w? (K, 2 +K, 2 +K, 2K, 2 w?) 11 /2
1 + K, ?o?

A =

The first term of Equation (46) is the transient part of the solution
and rapidly approaches zero as t increases. The second term represents
the steady state solution. The ratio of the amplitude of the steady state
balloon velocity to the amplitude of the wind velocity is therefore:

L1+ 0K, 2+K, 2 +K, 2K, 2w?) J1 /2
1+ K% .

D_ = (47)

B

> [»

Equation (47) gives the percentage response of the amplitude of the balloon
velocity to wind velocity for the frequency w/2m. The frequency is related

to the wavelength through the rise rate of the sensor by:
N o= (2m/w)E
where M is the wavelength

The velocity response of a balloon to the wavelength A can be calculated

from Equation (47) as a function of the balloon rise rate and the balloon
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dimension needed for evaluating K; and K,. It is interesting to note that the
balloon response does not depend upon the drag coefficient, except indirectly
through its effect on the rise rate. Thus, other dimensions being equal
(i.e., mass, diameter) a smooth and roughened sphere of the same rise

rate would have the same horizontal response to the wind field. The actual
velocity response of the smooth and roughened spheres represented in
Tables 3, 4, 5, and 6, at 10 and 14 kilometers, have been calculated for
wavelengths of 50 to 100 meters and are presented in Tables 7, 8, 9, and 10.
The tables were derived under the assumptions that the balloon is a point
mass. The diameter of large balloons may be a significant percentage of
the wavelength being examined and thus the point mass assumption is dubious.
For example, a 10 meter radius balloon has a diameter equal to 40% of a

50 meter wavelength. These results show excellent balloon response to

50 and 100 meter wave structure. Even the fast rising balloons of large
radii show response to at least 79% to 50 meter wave structure. Thus, the
response of any of the balloons considered, either smooth or roughened, is
most satisfactory and is not a limiting factor in designing a fine scale wind

measurement balloon system.

Summary and Conclusions - The error in the magnitude of the horizontal

wind field as computed for balloons with linear and quadratic rise rates
ascending through a light, moderate, or severe wind field has been derived.
The linear and quadratic rise rate functions chosen span the set of all practical
rise rate functions for a rising balloon. Figures are presented which show
the wind error versus altitude for each rise rate, and each wind field,
assuming 25-meter linear smoothing. Nominal FPS-16 radar errors of 0.1
mil in azimuth and elevation, five meters in slant range, and a time constant
At = 0.5 second are assumed throughout. The wind errors derived under
these assumptions can be adjusted in the case when the smoothing interval

is not 25 meters, or the time constant is not 0.5 second. Exact and
approximate expressions for these adjustments have been determined. The

results and figures presented are useful in determining the ultimate capability
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of rising balloon systems for measuring wind from the surface to 18 kilometers.
Using the figures presented, one can estimate the wind accuracy that can be
achieved by any type rising balloon by knowing only its rise rate behavior
versus altitude. In addition, the figures can be used in balloon design to

determine what rise rate function is needed to achieve specified accuracies.

Having specified a desired rise rate at a given altitude, the radius of
a smooth and roughened sphere needed to achieve this rise rate has been
derived. Since the equilibrium rise rate depends largely upon drag coefficient,
it was necessary to assume two drag coefficient curves - one for a smooth and
one for a roughened sphere. The curves chosen were from Hoerners [1]
for the smooth sphere; and the drag coefficient curve for the Jimsphere [12]
was assumed for a roughened sphere. Tables 3-6 show the balloon radius
for smooth and roughened spheres needed to achieve two meter per second to
20 meter per second rise rates at 10 and 14 kilometer altitudes. Due to the
higher drag coefficient for roughened spheres, a much larger radius is
required for roughened spheres to achieve the faster (10 m/sec to 20 m/sec)

rise rates,

The wind errors estimated in this report are in actuality balloon
velocity errors since it is assumed that the balloon is a perfect wind sensor.
That is, balloon velocity equals wind velocity. It has been shown in Tables
3- 6 that large radii balloons are required to achieve ten meter per second
or faster rise rates. It is important to know if these balloons, as well as
smaller radii balloons, are good wind sensors. It has been shown in Tables
7-10 that all of the different radii balloons given in Tables 3-6 are indeed
excellent wind sensors. Even the large diameter rough spheres show at
least a 79% response to a fifty-meter wave. Consequently the balloon
response provides no constraints in designing a fine scale wind measurement

balloon system.

The tables relating rise rate to radius have important applications

to the design of a rising balloon system. The proper perspective in
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interpreting these tables, however, is essential. Careful attention must be
paid to the assumptions under which the rise rate vs. radius tables were
generated. The basic assumptions were that the drag curves depicted for

smooth and rough spheres are reasonably accurate and that the spheres are

non-exandable, 1/4 mil mylar skin, helium-inflated to ambient pressure,

with no additional mass, ballast or instrument package. Any change in one

of these assumptions would produce a different set of rise rate vs. radius
tables. Consequently, by varying these assumptions, other means of obtaining
a specified rise rate are feasible. For example, to achieve a fast rise rate,

a more desirable means may be the design of a stream-lined balloon with a

low drag coefficient. Other possible means would be the design of an expanding
balloon, or perhaps an evaporating mass balloon (i.e., a balloon which loses
mass, as well as gas, as it ascends). The techniques derived in this report
can be used to provide rise rate versus radius tables under these and other
assumptions. Before designing an advanced balloon measurement system, one
should carefully compare and evaluate rise rate versus radius tables for various

type balloon structures.

There are other practical considerations in balloon design and evaluation
which have not been discussed in this report and are nevertheless of considerable
importance. Cost, for example, is always of fundamental importance in the
design of any system. Some of the large radius balloons discussed in this
report are impractical for routine operational systems because the cost of the
helium to fill these balloons would be exorbitant. Another practical consideration
is the free-lift buoyancy force of a fast rising balloon. Large diameter
balloons could provide a buoyancy force in excess of the weight of the man

anchoring the balloon.
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